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1 Introduction

Camera traps � cameras linked to detectors so that they �re when an animal is present � are
a major source of information on the abundance and habitat preferences of rare or shy forest
animals. Modern cameras record the time of the photo, and the use of this to investigate diel 1

activity patterns was immediately recognised (Gri�ths and van Schaik, 1993).
Initially this resulted in broad classi�cation of taxa as diurnal, nocturnal, crepuscular, or

cathemeral (van Schaik and Gri�ths, 1996). More recently, researchers have compared activity
patterns among species to see how overlapping patterns may relate to competition or predation
(Linkie and Ridout, 2011; Carver et al., 2011; Ramesh et al., 2012; Carter et al., 2012; Kamler
et al., 2012; Ross et al., 2013; Azevedo et al., 2018).

Ridout and Linkie (2009) presented methods to �t kernel density functions to times of
observations of animals and to estimate the coe�cient of overlapping, a quantitative measure
ranging from 0 (no overlap) to 1 (identical activity patterns). The code they used forms the
basis of the overlap package.

Although motivated by the analysis of camera trap data, overlap could be applied to data
from other sources such as data loggers, provided data collection is carried out around the clock.
Nor is it limited to diel cycles: tidal cycles or seasonal cycles, such as plant �owering or fruiting
or animal breeding seasons could also be investigated.

2 Kernel density curves

2.1 Example data set

To demonstrate the use of the software we will use camera-trapping data from Kerinci-Seblat
National Park in Sumatra, Indonesia (Ridout and Linkie, 2009).

> library(overlap)

> data(kerinci)

> head(kerinci)

Zone Sps Time

1 1 tiger 0.175

2 1 tiger 0.787

3 1 tiger 0.247

4 1 tiger 0.591

5 1 tiger 0.500

6 1 tiger 0.564

> table(kerinci$Zone)

1We use �diel" for 24-hour cycles, and reserve �diurnal" to mean �not nocturnal".
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1 2 3 4

104 425 280 289

> summary(kerinci$Sps)

boar clouded golden macaque muntjac sambar tapir tiger

28 86 104 273 200 25 181 201

> range(kerinci$Time)

[1] 0.003 0.990

The data provide time-of-capture data from 4 Zones within the Park for 8 species: wild
pig (�boar�), clouded leopard, golden cat, pig-tailed macaque, common muntjac, sambar deer,
tapir, and tiger.

The unit of time is the day, so values range from 0 to 1. Package overlap works entirely
in radians: �tting density curves uses trigonometric functions (sin, cos, tan), so this speeds up
bootstraps and simulations. The conversion is straightforward:

> timeRad <- kerinci$Time * 2 * pi

2.2 Fitting kernel density

We will extract the data for tigers in Zone 2 (which has the most observations) and plot a kernel
density curve:

> tig2 <- timeRad[kerinci$Zone == 2 & kerinci$Sps == 'tiger']

> densityPlot(tig2, rug=TRUE)
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Figure 1: Fitted kernel density curve for tigers in Zone 3, using default smoothing parameters.

Figure 1 shows the activity pattern from 21:00 to 03:00, a reminder that the density is
circular. Unlike the usual density plot that uses a Gaussian kernel, we use a von Mises kernel,
corresponding to a circular distribution.
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The actual data are shown at the foot of Figure 1 as a `rug'.
Density estimation involves smoothing the information in the data, and the degree of smooth-

ing is controlled by the argument adjust to the densityPlot function. Increasing adjust above
the default value of 1 gives a �atter curve, reducing it gives a more `spiky' curve, as shown in
Figure 2. The choice of adjust a�ects the estimate of overlap, as we discuss below.
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Figure 2: Kernel density curves �tted with di�erent smoothing adjustments.

3 Quantifying overlap

Various measures of overlap have been put forward: see Ridout and Linkie (2009) for a review.
We use the coe�cient of overlapping proposed by Weitzman (1970).

3.1 Coe�cient of overlapping

As shown in Figure 3, the coe�cient of overlapping, ∆, is the area lying under both of the density
curves. (Remember that the area under a density curve is, by de�nition, one.) Mathematically,
if the two density curves are f(x) and g(x), this is:

∆(f, g) =

∫
min{f(x), g(x)}dx (1)

This works if we know the true density distributions, f(x) and g(x); but we usually only
have samples and need to estimate ∆ from these.
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3.2 Estimators

Five general nonparametric estimators of the coe�cient of overlapping were proposed by Schmid
and Schmidt (2006). For circular distributions, the �rst two are equivalent and the third is
unworkable (Ridout and Linkie, 2009). We retain ∆̂1, ∆̂4 and ∆̂5.

The �rst, ∆̂1, matches the de�nition in equation (1), but in practice it is estimated numeri-
cally, taking a large number of values, t1, t2, ..., tT , equally spaced between 0 and 2π (ti = 2πi/T )
and summing:

∆̂1 =
1

T

T∑
i=1

min{f̂(ti), ĝ(ti)} (2)

For ∆̂4 and ∆̂5, we compare the densities at the observed values, x1, ..., xn for one species
and y1, ..., ym for the other:

∆̂4 =
1

2

(
1

n

n∑
i=1

min

{
1,

ĝ(xi)

f̂(xi)

}
+

1

m

m∑
i=1

min

{
1,

f̂(yi)

ĝ(yi)

})
(3)

∆̂5 =
1

n

n∑
i=1

I
{
f̂(xi) < ĝ(xi)

}
+

1

m

m∑
i=1

I
{
ĝ(yi) ≤ f̂(yi)

}
(4)

where I(.) is 1 if the condition in the parenthesis is true, 0 otherwise.

The terms f̂(.) and ĝ(.) refer to the �tted kernel density functions, and as such they are
a�ected by the choice of the smoothing constant, adjust. On the basis of simulations, Ridout
and Linkie (2009) recommend using adjust = 0.8 to estimate ∆̂1, adjust = 1 for ∆̂4, and
adjust = 4 for ∆̂5. (Note that adjust in the overlap functions corresponds to 1/c in Ridout
and Linkie (2009)). These are the default values used in overlap functions.

3.3 Choice of estimator

Ridout and Linkie (2009) carried out simulations with a variety of scenarios where the true
overlap was known, and compared the resulting estimates with the truth, calculating the root
mean squared error (RMSE) for each estimator. The present authors have carried out further
simulations in the same manner.

We found that the best estimator depended on the size of the smaller of the two samples:
When the smaller sample was less than 50, ∆̂1 performed best, while ∆̂4 was better when it
was greater than 75.

In no case was ∆̂5 found to be useful. It is unstable, in that small, incremental changes in
the data produce discontinuous changes in the estimate, and it can give estimates greater than
one.

3.4 Examples

We will see how this works with the kerinci data set. We will extract the data for tigers and
macaques for Zone 2, calculate the overlap with all three estimators, and plot the curves:

> tig2 <- timeRad[kerinci$Zone == 2 & kerinci$Sps == 'tiger']

> mac2 <- timeRad[kerinci$Zone == 2 & kerinci$Sps == 'macaque']

> min(length(tig2), length(mac2))

[1] 83

> tigmac2est <- overlapEst(tig2, mac2, type="Dhat4")

> tigmac2est
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Dhat4

0.4205464

> overlapPlot(tig2, mac2, main="Zone 2")

> legend('topright', c("Tigers", "Macaques"), lty=c(1,2), col=c(1,4), bty='n')
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Figure 3: Activity curves for tigers and macaques in Zone 2. The coe�cient of overlapping

equals the area below both curves, shaded grey in this diagram.

Both of these samples have more than 75 observations, so we chose to use the ∆̂4 estimate,
Dhat4 in the R code, giving an estimate of overlap of 0.42.

4 Con�dence intervals

To estimate con�dence intervals we need to know the sampling distribution which our coe�cient
of overlapping is drawn from, ie, the distribution we would get if we had a very large number
of independent samples from nature. The best way to investigate this is to use a bootstrap.

4.1 The bootstrap

The usual bootstrap method treats the existing sample as representative of the population, and
generates a large number of new samples by randomly resampling observations with replacement
from the original sample. For the case of estimating activity patterns, this may not work very
well: suppose our original sample for a nocturnal species has observations ranging from 20:58
to 03:14; resampling will never yield an observation outside that range, while a fresh sample
from nature may do so.

An alternative is a smoothed bootstrap. We begin by �tting a kernel density to the original
data then draw random simulated observations from this distribution. Faced with original
values between 20:58 and 03:14, most simulated observations would fall in the same range, but
a few will fall outside.

In the overlap package, we generate bootstrap samples with bootstrap, which has a smooth
argument; if smooth = TRUE (the default), smoothed bootstrap samples are generated. For this
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example, we will generate just 1000 bootstrap estimates for tigers and macaques in Zone 2; for
a real analysis 10,000 bootstrap samples would be better:

> tigmac2 <- bootstrap(tig2, mac2, 1000, type="Dhat4") # takes a few seconds

> ( BSmean <- mean(tigmac2) )

[1] 0.4767415

Note that the bootstrap mean, BS, di�ers from ∆̂: 0.48 versus 0.42. The di�erence, BS−∆̂,
is the bootstrap bias, and we need to take this into account when calculating the con�dence
interval.

If the bootstrap bias were a good estimate of the original sampling bias, a better estimator
of ∆ would be ∆̃ = 2∆̂− BS. Our simulations show that ∆̃ results in higher RMSE than the
original ∆̂, so we do not recommend applying this correction.

4.2 Extracting the CI

One way to estimate the con�dence interval is simply to look at the appropriate percentiles of
the set of bootstrap estimates (interpolating between values if necessary): for a 95% con�dence
interval these would be the 2.5% and 97.5% percentiles. This is perc in the output from
overlap's bootCI function.

We noted at the end of Section 4.1 that, on average, the bootstrap values di�er from the
estimate: this is the bootstrap bias. The raw percentiles produced by perc need to be adjusted
to account for this bias. The appropriate con�dence interval is perc −(BS− ∆̂); this is basic0
in the bootCI output.

An alternative approach is to use the standard deviation of the bootstrap results, (sBS),
as an estimate of the spread of the sampling distribution, and then calculate the con�dence
interval as ∆̂ ± zα/2sBS. Using z0.025 = 1.96 gives the usual 95% con�dence interval. This is
norm0 in the bootCI output. This procedure assumes that the sampling distribution is normal.
If that's the case, norm0 will be close to basic0, but if the distribution is skewed � as it will be
if ∆̂ is close to 0 or 1 � basic0 is the better estimator.

For the tiger-macaque data from Zone 2 we have the following estimates of a 95% con�dence
interval:

> bootCI(tigmac2est, tigmac2)

lower upper

norm 0.2653212 0.4633812

norm0 0.3215163 0.5195764

basic 0.2603260 0.4717210

basic0 0.3131765 0.5245715

perc 0.3693717 0.5807667

bootCI produces two further estimators: basic and norm. These are analogous to basic0

and norm0 but are intended for use with the bias-corrected estimator, ∆̃. They match the basic
and norm con�dence intervals produced by boot.ci in package boot.

The coe�cient of overlapping takes values in the interval [0,1]. All the con�dence interval
estimators except perc involve additive corrections which might result in values outside of
this range. This can be avoided by carrying out the corrections on a logistic scale and back-
transforming. This is done by bootCIlogit:

> bootCIlogit(tigmac2est, tigmac2)
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lower upper

norm 0.2791979 0.4637281

norm0 0.3269348 0.5202438

basic 0.2754822 0.4734877

basic0 0.3183694 0.5248693

perc 0.3693717 0.5807667

In this example, the CIs are well away from 0 or 1, so the di�erence is small (and perc is
exactly the same as there's no correction anyway).

4.3 Choice of CI method

If a series of X% con�dence intervals are calculated from independent samples from a population,
we would expect X% of them to include the true value. When running simulations we know
the true value and can check the actual proportion of con�dence intervals which contain the
true value: this is the coverage of the estimator. Ideally the coverage should equal the nominal
con�dence interval, ie, 95% coverage for a 95% con�dence interval.

We ran a large number of simulations with di�erent true distributions and sample sizes (see
Ridout and Linkie (2009) for details). For each scenario, we ran both smoothed and unsmoothed
bootstraps, extracted all nine 95% con�dence intervals, and checked the coverage for each.

Each estimator gave a range of coverages. We looked for a method which gave median
coverage closest to the nominal 95% and all or most values above 90%. This was satis�ed by
the basic0 estimator with smoothed bootstraps.

With small samples (smaller sample < 75) and ∆ > 0.8, coverage sometimes fell below
90%, but none of the other options fared better.

5 Summary of recommendations

� Use the ∆̂4 estimator (Dhat4) if the smaller sample has more than 75 observations. Oth-
erwise, use the ∆̂1 estimator (Dhat1).

� Use a smoothed bootstrap and do at least 1000 resamples, preferably 10,000.

� Use the basic0 output from bootCI as your con�dence interval; be aware that this con-
�dence interval will be too narrow if you have a small sample and ∆ is close to 1.

6 Caveats

6.1 Pooling data

Pooled data give higher estimates of overlap than the original, unpooled data (Ridout and
Linkie, 2009). Suppose we �nd a species of bat that emerges immediately after sunset and
a hawk which goes to roost just before sunset: their activity patterns do not overlap and
presumably the hawk will not be feeding on the bats. But the time of sunset changes; data
from December only or from June only show no overlap, but the pooled data do, and this
apparent overlap is an artefact of pooling.

This is a clear-cut example. In general, di�erences in activity patterns across sites or time
periods will be smaller, but any heterogeneity will in�ate the overlap estimates from pooled
data. Care is needed when comparing coe�cients of overlap among study areas or periods of
varying extent or degree of heterogeneity.

One way to mitigate these di�erences is to map "clock time" to "sun time" (Nouvellet et al.,
2012). The new function sunTime allows this to be done, see its help page. Azevedo et al.

(2018) used this approach for their study of puma.
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6.2 What �activity" is observed?

Camera traps set along animal trails � as they often are � record instances of animals moving
along trails. The resulting �activity pattern" refers to walking on trails, and overlap indicates
the extent to which two species are walking on trails at the same period of the day. A browsing
herbivore and the carnivore stalking it are probably both �inactive" by this de�nition.

In view of this, conclusions about species interactions need to be drawn with care. In a
study in Lao PDR, Kamler et al. (2012) found that dhole and pig were active during the day
and deer at night. This might suggest that dhole feed on pig rather than deer. But examination
of dhole faeces showed that dhole consumed mainly deer and very little pig.
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